

SKIN ON CHIP

Mimic the structure and function of the skin in a controlled and dynamic environment, including the crucial blood flow simulation that better recapitulate the transdermal transport of molecules. Our MIVO®-based Skin on Chip provides a powerful tool for studying the skin's response to various stimuli, including drugs, toxins, and environmental factors, as well as for understanding the biological process behind skin wounds and repair. *Improve the efficacy of your formulations in a controlled environment with a cost-effective and time-saving reproducible model.*

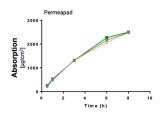
APPLICATIONS

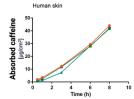
- SKIN AGING
- WOUND HEALING
- SKIN-IMMUNE RESPONSE
- GUT-SKIN AXIS
- SKIN HYDRATATION
- TRANSDERMAL TRANSPORT
- SKIN IRRITATION
- VACCINE

POSSIBLE READOUTS

- CYTOTOXICITY
- KINETIC OF PERMEATION
- TEER MEASUREMENTS
- CYTOKINES RELEASE
- IMMUNE CELLS INFILTRATION
- TISSUE MORPHOLOGY
- DRUG DELIVERY
- CELLS DIFFERENTIATION

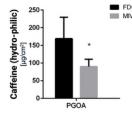
SKIN TISSUE MODELS COMPATIBILITY

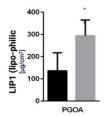



FEATURES

Consistent Experimental Reproducibility

The caffeine absorption curves of different samples show overlapping results with a st. dev. < 2%




Cost-Efficient & Time-Saving Optimize your R&D resources and save time with our cost-effective

approach.

Reliable and Predictable Results drugs bioavailability in line with clinical data

Cutting-Edge, Patented Technology, compliant with OECD guidelines

Leverage innovative, patented technology that leads the way in permeation testing.

REFERENCES

Pulsoni I et al, SLAS Technology, 2022

Comparison Between Franz Diffusion Cell and MIVO, a novel Micro-physiological System for In Vitro Penetration Assay Using Different Skin Models

Marrella A et al, Altex 2020

In vitro demonstration of intestinal absorption mechanisms of different sugars using 3D organotypic tissues in a fluidic device

